Area of a triangle (2)

Divide each rectangle into two right-angled triangles. The first one has been done for you.

Calculate the area of the rectangle and the triangle.

b) Explain how you worked out the area of the right-angled triangle.

Calculate the areas of the right-angled triangles.

Whitney is calculating the area of the triangle using the formula.

Area =
$$\frac{1}{2}$$
 × base × perpendicular height

The area is
$$\frac{1}{2} \times 4 \times 3$$
.
You can ignore the 5 because it isn't the base or the perpendicular height.

Do you agree with Whitney? _

Talk about it with a partner.

1 cm

Insert the correct numbers into the formula to calculate the area of the triangle.

$$\frac{1}{2} \times \boxed{ } \times \boxed{ } = \boxed{ } \text{cm}^2$$

6 Calculate the areas of the triangles.

7 The width of the right-angled triangles is increasing by 1 cm.

Investigate the pattern for the areas.

What happens to the pattern if the length and width increase?

